悲观锁 VS 乐观锁

悲观锁

在并发操作时,多个线程争抢同一把锁,会进行线程的切换,将等待线程暂时挂起,等待被唤醒,线程间的切换耗费时间。

乐观锁

不会进行线程切换的操作,常见的是通过CAS自旋来实现锁机制,并发时,通过对原值和修改值的比对进行数据验证,验证不通过,会自旋重试,直到成功为止。这种操作不耗费线程切换的资源,性能高,但也存在一些缺点。

  1. ABA问题,CAS需要在操作值的时候检查内存值是否发生变化,没有发生变化才会更新内存值。但是如果内存值原来是A,后来变成了B,然后又变成了A,那么CAS进行检查时会发现值没有发生变化,但是实际上是有变化的。ABA问题的解决思路就是在变量前面添加版本号,每次变量更新的时候都把版本号加一,这样变化过程就从“A-B-A”变成了“1A-2B-3A”。
  2. 循环时间长开销大。CAS操作如果长时间不成功,会导致其一直自旋,给CPU带来非常大的开销。
  3. 只能保证一个共享变量的原子操作 对一个共享变量执行操作时,CAS能够保证原子操作,但是对多个共享变量操作时,CAS是无法保证操作的原子性的。Java从1.5开始JDK提供了AtomicReference类来保证引用对象之间的原子性,可以把多个变量放在一个对象里来进行CAS操作。

自旋锁 VS 适应性自旋锁

自旋锁

在等待锁时,不会将线程挂起,而是让当前线程进行自旋,如果在自旋完成后前面锁定同步资源的线程已经释放了锁,那么当前线程就可以不必阻塞而是直接获取同步资源,从而避免切换线程的开销。

适应性自旋锁

意味着自旋的时间(次数)不再固定,而是由前一次在同一个锁上的自旋时间及锁的拥有者的状态来决定。如果在同一个锁对象上,自旋等待刚刚成功获得过锁,并且持有锁的线程正在运行中,那么虚拟机就会认为这次自旋也是很有可能再次成功,进而它将允许自旋等待持续相对更长的时间。如果对于某个锁,自旋很少成功获得过,那在以后尝试获取这个锁时将可能省略掉自旋过程,直接阻塞线程,避免浪费处理器资源。

synchronized 四种状态 无锁 VS 偏向锁 VS 轻量级锁 VS 重量级锁

无锁

就是没有对资源进行锁定,修改操作在循环内进行,线程会不断的尝试修改共享资源。如果没有冲突就修改成功并退出,否则就会继续循环尝试。

偏向锁

是指一段同步代码一直被一个线程所访问,那么该线程会自动获取锁,降低获取锁的代价。偏向锁只有遇到其他线程尝试竞争偏向锁时,持有偏向锁的线程才会释放锁,线程不会主动释放偏向锁。

轻量级锁

是指当锁是偏向锁的时候,被另外的线程所访问,偏向锁就会升级为轻量级锁,其他线程会通过自旋的形式尝试获取锁,不会阻塞,从而提高性能。若当前只有一个等待线程,则该线程通过自旋进行等待。但是当自旋超过一定的次数,或者一个线程在持有锁,一个在自旋,又有第三个来访时,轻量级锁升级为重量级锁。

重量级锁

等待锁的线程都会进入阻塞状态。

公平锁 VS 非公平锁

公平锁

是指多个线程按照申请锁的顺序来获取锁,线程直接进入队列中排队,队列中的第一个线程才能获得锁。

  1. 公平锁的优点是等待锁的线程不会饿死。
  2. 缺点是整体吞吐效率相对非公平锁要低,等待队列中除第一个线程以外的所有线程都会阻塞,CPU唤醒阻塞线程的开销比非公平锁大。

非公平锁

是多个线程加锁时直接尝试获取锁,获取不到才会到等待队列的队尾等待。但如果此时锁刚好可用,那么这个线程可以无需阻塞直接获取到锁,所以非公平锁有可能出现后申请锁的线程先获取锁的场景。

  1. 非公平锁的优点是可以减少唤起线程的开销,整体的吞吐效率高,因为线程有几率不阻塞直接获得锁,CPU不必唤醒所有线程。
  2. 缺点是处于等待队列中的线程可能会饿死,或者等很久才会获得锁。

可重入锁 VS 非可重入锁

可重入锁

可重入锁又名递归锁,是指在同一个线程在外层方法获取锁的时候,再进入该线程的内层方法会自动获取锁(前提锁对象得是同一个对象或者class),不会因为之前已经获取过还没释放而阻塞。可重入锁的一个优点是可一定程度避免死锁。

非可重入锁

与可重入锁相反,一个锁只能和一个线程一对一绑定,只有释放后,才可以重新获取新锁。非可重入锁比较容易出现死锁。

独享锁 VS 共享锁

独享锁

独享锁也叫排他锁,是指该锁一次只能被一个线程所持有。如果线程T对数据A加上排它锁后,则其他线程不能再对A加任何类型的锁。获得排它锁的线程即能读数据又能修改数据。JDK中的synchronized和JUC中Lock的实现类就是互斥锁。

共享锁

共享锁是指该锁可被多个线程所持有。如果线程T对数据A加上共享锁后,则其他线程只能对A再加共享锁,不能加排它锁。获得共享锁的线程只能读数据,不能修改数据。

独享锁与共享锁也是通过AQS来实现的,通过实现不同的方法,来实现独享或者共享。

线程池

解决了什么问题

  1. 频繁申请/销毁资源和调度资源,将带来额外的消耗,可能会非常巨大。
  2. 对资源无限申请缺少抑制手段,易引发系统资源耗尽的风险。
  3. 系统无法合理管理内部的资源分布,会降低系统的稳定性。

执行机制

  1. 首先检测线程池运行状态,如果不是RUNNING,则直接拒绝,线程池要保证在RUNNING的状态下执行任务。
  2. 如果workerCount < corePoolSize,则创建并启动一个线程来执行新提交的任务。
  3. 如果workerCount >= corePoolSize,且线程池内的阻塞队列未满,则将任务添加到该阻塞队列中。
  4. 如果workerCount >= corePoolSize && workerCount < maximumPoolSize,且线程池内的阻塞队列已满,则创建并启动一个线程来执行新提交的任务。
  5. 如果workerCount >= maximumPoolSize,并且线程池内的阻塞队列已满, 则根据拒绝策略来处理该任务, 默认的处理方式是直接抛异常。

CPU 密集型 和 IO密集型 对线程池配置的影响

CPU 密集型

CPU密集型也叫计算密集型,指的是系统的硬盘、内存性能相对CPU要好很多,此时,系统运作大部分的状况是CPU Loading 100%,CPU要读/写I/O(硬盘/内存),I/O在很短的时间就可以完成,而CPU还有许多运算要处理,CPU Loading很高。比如说要计算1+2+3+…+ 1亿、计算圆周率后几十位、数据分析。 都是属于CPU密集型程序。。

IO密集型

IO密集型指的是系统的CPU性能相对硬盘、内存要好很多,此时,系统运作,大部分的状况是CPU在等I/O (硬盘/内存) 的读/写操作,但CPU的使用率不高。cpu 有空闲时间一直在等待IO操作

如何确定线程池大小

Ncpu 表示 核心数。

*如果是CPU密集型任务,就需要尽量压榨CPU,参考值可以设为 Ncpu+1*

*如果是IO密集型任务,参考值可以设置为 2 * Ncpu*

腾讯的面试题

问题一

假如一个程序平均每个线程CPU运行时间为0.5s,而线程等待时间(非CPU运行时间,比如IO)为1.5s,CPU核心数为8,那么最佳的线程数应该是?

根据上面这个公式估算得到最佳的线程数:((0.5+1.5)/0.5)*8=32 # 总耗时/CPU耗时*CPU核心数

问题二

假如在一个请求中,计算操作需要5ms,DB操作需要100ms,对于一台8个CPU的服务器,总共耗时100+5=105ms,而其中只有5ms是用于计算操作的,CPU利用率为5/(100+5)。使用线程池是为了尽量提高CPU的利用率,减少对CPU资源的浪费,假设以100%的CPU利用率来说,要达到100%的CPU利用率,又应该设置多少个线程呢?

((5+100)/5)*8=168 个线程 # 总耗时/CPU耗时*CPU核心数

问题三

那如果现在这个IO操作是DB操作,而DB的QPS上限是1000,这个线程池又该设置为多大呢?

这个可以安装比例进行,根据上面算出168最大的线程数,可以反推出DB的最大QPS:

168*(1000/(100+5))=1600 # 168线程*(1000毫秒/105秒执行时间)=1600QPS

如果现在DB的QPS最大为1000,那么对应的,最大只能设置168(1000/1600)=105个线程

Mybatis缓存

一级缓存

如何开启

1
<setting name="localCacheScope" value="SESSION"/>

问题点

  1. MyBatis一级缓存的生命周期和SqlSession一致。
  2. MyBatis一级缓存内部设计简单,只是一个没有容量限定的HashMap,在缓存的功能性上有所欠缺。
  3. MyBatis的一级缓存最大范围是SqlSession内部,有多个SqlSession或者分布式的环境下,数据库写操作会引起脏数据,建议设定缓存级别为Statement。

二级缓存

如何开启

1
<setting name="cacheEnabled" value="true"/>

问题点

  1. MyBatis的二级缓存相对于一级缓存来说,实现了SqlSession之间缓存数据的共享,同时粒度更加的细,能够到namespace级别,通过Cache接口实现类不同的组合,对Cache的可控性也更强。
  2. MyBatis在多表查询时,极大可能会出现脏数据,有设计上的缺陷,安全使用二级缓存的条件比较苛刻。
  3. 在分布式环境下,由于默认的MyBatis Cache实现都是基于本地的,分布式环境下必然会出现读取到脏数据,需要使用集中式缓存将MyBatis的Cache接口实现,有一定的开发成本,直接使用Redis、Memcached等分布式缓存可能成本更低,安全性也更高。

缓存

清空策略

  • FIFO(first in first out)

先进先出策略,最先进入缓存的数据在缓存空间不够的情况下(超出最大元素限制)会被优先被清除掉,以腾出新的空间接受新的数据。策略算法主要比较缓存元素的创建时间。在数据实效性要求场景下可选择该类策略,优先保障最新数据可用。

  • LFU(less frequently used)

最少使用策略,无论是否过期,根据元素的被使用次数判断,清除使用次数较少的元素释放空间。策略算法主要比较元素的hitCount(命中次数)。在保证高频数据有效性场景下,可选择这类策略。

  • LRU(least recently used)

最近最少使用策略,无论是否过期,根据元素最后一次被使用的时间戳,清除最远使用时间戳的元素释放空间。策略算法主要比较元素最近一次被get使用时间。在热点数据场景下较适用,优先保证热点数据的有效性。

除此之外,还有一些简单策略比如:

  • 根据过期时间判断,清理过期时间最长的元素;
  • 根据过期时间判断,清理最近要过期的元素;
  • 随机清理;
  • 根据关键字(或元素内容)长短清理等。